# The Equilibrium Thermodynamics of a Spin-Boson Model 

J. T. Lewis ${ }^{1}$ and G. A. Raggio ${ }^{1}$

Received November 10, 1987


#### Abstract

We consider the equilibrium thermodynamics of a Dicke-type model for $N$ identical spins of arbitrary magnitude interacting linearly and homogeneously with a boson field in a volume $V_{N}$, in the limit $N \rightarrow \infty, V_{N} \rightarrow \infty$, with $N / V_{N}=$ const. The system exhibits a second-order phase transition; complete information on the spin polarizations and their correlations is obtained. The proofs use a general result on the free energy of quantum spin systems based on the large deviation principle and the Berezin-Lieb inequalities.


KEY WORDS: Spins coupled to a boson field; Dicke maser model; secondorder phase transition; large deviations.

## 1. INTRODUCTION

In 1954, Dicke ${ }^{(1)}$ introduced the Hamiltonian

$$
H_{n}=\omega a^{*} a+\varepsilon \sum_{k=1}^{n} S_{(k)}^{z}+n^{-1 / 2} \lambda \sum_{k=1}^{n}\left[a S_{(k)}^{+}+a^{*} S_{(k)}^{-}\right]
$$

as a caricature for a system of $n$ identical atoms, described in a two-level approximation by spin $1 / 2$ operators $\mathbf{S}_{(k)}$, interacting with one mode of the quantized electromagnetic field of frequency $\omega$ in the dipole and rotatingwave approximations. The dynamics of the Dicke maser model has since been studied extensively. ${ }^{(2,3)}$

In 1973 interest in the thermodynamics of the Dicke maser model was boosted when Hepp and Lieb ${ }^{(4)}$ gave a rigorous and complete discussion of the thermodynamics of the model and discovered its second-order phase

[^0]transition. Subsequently these authors ${ }^{(5)}$ considered many-mode versions, removing also the rotating-wave approximation:
$$
H_{n}=\sum_{v=1}^{M} \omega_{n}(v) a_{v}^{*} a_{v}+\varepsilon \sum_{k=1}^{n} S_{(k)}^{z}+n^{-1 / 2} \sum_{v=1}^{M} \sum_{k=1}^{n}\left[\lambda_{n}(v) a_{v}^{*}+\overline{\lambda_{n}(v)} a_{v}\right] S_{(k)}^{x}
$$

The approximating Hamiltonian method has been used to study the model and its variations. These studies include models with infinitely many modes, ${ }^{(6,7)}$ arbitrary spins (i.e., not restricted to be of magnitude $1 / 2$ ), and also models where the coupling constants $\lambda$ depend on the spin index. ${ }^{(8)}$ Reviews of these results are given in Refs. 9 and 10. The thermodynamic equilibrium states have also been analyzed, ${ }^{(11,12)}$ using the methods of algebraic quantum statistical mechanics.

Here, we consider the equilibrium thermodynamics of the infinitely many-mode model specified by the Hamiltonian

$$
H_{n}=\sum_{v \geqslant 1} \omega_{n}(v) a_{v}^{*} a_{v}+\varepsilon \sum_{k=1}^{n} S_{(k)}^{z}+V_{n}^{-1 / 2} \sum_{v \geqslant 1} \sum_{k=1}^{n}\left[\lambda_{n}(v) a_{v}^{*}+\overline{\lambda_{n}(v)} a_{v}\right] S_{(k)}^{x}
$$

where the spin operators $\mathbf{S}_{(k)}$ are copies of a spin operator $\mathbf{S}$ of arbitrary magnitude $j=1 / 2,1,3 / 2,2, \ldots$. The quantity $V_{n}$ is the quantization volume of the boson field, and we will consider the thermodynamic limit where $n \rightarrow \infty, V_{n} \rightarrow \infty$, but the density of spins $\rho=n / V_{n}$ remains constant. We assume that the strictly positive frequencies $\left\{\omega_{n}(v): v \geqslant 1\right\}$ satisfy

$$
\sum_{v \geqslant 1} e^{-\beta \omega_{n}(v)}<\infty
$$

and the complex coupling constants $\left\{\lambda_{n}(v): v \geqslant 1\right\}$ satisfy

$$
\sum_{v \geqslant 1}\left|\lambda_{n}(v)\right|^{2}<\infty
$$

These conditions guarantee the self-adjointness of $H_{n}$ and the finiteness of the associated partition function. The equilibrium thermodynamics of the model is obtained as an application of a general result for quantum spin system, ${ }^{(13)}$ obtained by a combination of large deviation methods and Berezin-Lieb inequalities. Only two conditions are required, namely: the existence of the thermodynamic limit $f^{0}(\beta)=\lim _{n \rightarrow \infty} f_{n}^{0}(\beta)$ of the freeenergy density $f_{n}^{\circ}(\beta)$ of the free boson field, where

$$
\begin{aligned}
f_{n}^{0}(\beta) & =\left(-1 / \beta V_{n}\right) \log \operatorname{trace}_{\text {bosons }} \exp \left[-\beta \sum_{v \geqslant 1} \omega_{n}(v) a_{v}^{*} a_{v}\right] \\
& =\left(1 / \beta V_{n}\right) \sum_{v \geqslant 1} \log \left\{1-\exp \left[-\beta \omega_{n}(v)\right]\right\}
\end{aligned}
$$

and the existence of the limit

$$
A=\lim _{n \rightarrow \infty} \sum_{v \geqslant 1} \omega_{n}(v)^{-1}\left|\lambda_{n}(v)\right|^{2}
$$

Previous results ${ }^{(6)}$ on the infinitely many-mode case were derived under stronger assumptions. The generalization to spins of arbitrary magnitude is of interest because the Hamiltonian $H_{n}$ describes a system of quantum spins interacting with the quantized electromagnetic field and with an external magnetic field $\mathbf{B}=(0,0,-\varepsilon)$; in atomic physics, models with two-level atoms are of greatest interest.

Briefly and qualitatively, our results are the following:
Let $\eta=|\varepsilon| / 2 j \rho A$; for $\eta \geqslant 1$, the thermodynamic properties of the system are identical with those of the noninteracting system [obtained by setting $\lambda_{n}(v)=0$, for all $n$ and $\left.v \geqslant 1\right]$; for $\eta<1$ we recover the second-order phase transition discovered by Hepp and Lieb ${ }^{(4)}$ : there exists a nonzero finite critical temperature $T_{c}$ depending on $j|\varepsilon|$ and $\eta$, at which the second derivative of the specific free energy with respect to the temperature is discontinuous.

The following rigorous results appear to be new:

1. The mean spin polarization in the $z$ direction is always dispersionfree; below $T_{c}$ this polarization is given by $-\varepsilon / 2 \rho \Lambda$ and is thus independent of the temperature and of the magnitude $j$ of the spins (see Fig. 1).
2. The mean spin polarization in the $x$ direction has nonzero dispersion below $T_{c}$ (see Fig. 2).
3. There is a spontaneous polarization in the $x$ direction below $T_{c}$ : perturbing the Hamiltonian $H_{n}$ by $\alpha \sum S_{(k)}^{x}$, the mean spin polarization in the $x$ direction is an odd function of $\alpha$, which does not go to zero as $\alpha \rightarrow 0$ for $T<T_{c}$ when $\eta<1$ (see Fig. 4).
4. The boson density, as a function of frequency, is equal to the free boson density for $\eta \geqslant 1$, and for $\eta<1$ when $T \geqslant T_{c}$; for $\eta<1$ and $T<T_{c}$ the difference between the boson density and the free boson density is positive and increases with increasing frequency.

## 2. THE RESULTS

Let $\mathbf{S}=\left(S^{x}, S^{y}, S^{z}\right)$ be spin operators of magnitude $j \in\{1 / 2,1,3 / 2, \ldots\}$, acting on the $(2 j+1)$-dimensional Hilbert space $\mathfrak{D}(j)$, and satisfying the usual commutation relations $\left[S^{x}, S^{\nu}\right]=i S^{2}$ (and cyclic permutations). We let $\Omega_{n}$ be the $n$-fold ( $n=1,2,3, \ldots$ ) tensor product of $\mathcal{D}(j)$, and let
$\mathbf{S}_{(k)}(k=1,2, \ldots, n)$ be a copy of $S$ acting on the $k$ th component of $\mathfrak{\Omega}_{n}$. We set

$$
\mathbf{S}_{n}=\sum_{k=1}^{n} \mathbf{S}_{(k)} \quad \text { on } \quad \boldsymbol{S}_{n}
$$

For each $n=1,2, \ldots$, the boson field is specified by the one-particle Hamiltonian $\mathfrak{h}_{n}$ acting on the Hilbert space $L^{2}\left(\mathscr{A}_{n}\right)$ where $\mathscr{A}_{n}$ is a bounded subset of $\mathbb{R}^{d}(d=1,2,3, \ldots)$ of volume (i.e., Lebesgue measure) $V_{n}$. The Hamiltonian $\mathfrak{h}_{n}$ is assumed to be a positive, injective self-adjoint operator such that $\exp \left(-\beta \mathfrak{h}_{n}\right)$ is a trace-class operator for each $\beta>0$. This implies that $\mathfrak{h}_{n}$ has a bounded inverse.

The Hamiltonian for the composite system of $n$ spins (of magnitude $j$ ) interacting with the boson field is ${ }^{2}$

$$
\begin{equation*}
H_{n}=d \Gamma\left(\mathfrak{h}_{n}\right) \otimes 1+\varepsilon 1 \otimes S_{n}^{z}+V_{n}^{-1 / 2}\left[a^{*}\left(\lambda_{n}\right)+a\left(\lambda_{n}\right)\right] \otimes S_{n}^{x} \tag{1}
\end{equation*}
$$

on the Hilbert space $\mathfrak{F} \otimes \Omega_{n}$, where $\mathfrak{F}$ is the symmetric Fock space built upon $L^{2}\left(\mathscr{A}_{n}\right), \varepsilon$ is real, and $\lambda_{n} \in L^{2}\left(\mathscr{A}_{n}\right)$. Here, $a(\cdot)$ denotes the usual annihilation operator on $\mathfrak{F}$, and $d \Gamma(\cdot)$ is the second-quantization map. It can be easily verified (see Appendix A) that (1) does indeed define a selfadjoint operator with domain equal to that of $d \Gamma\left(\mathfrak{h}_{n}\right) \otimes 1$, and that

$$
Z_{n}(\beta)=\underset{\mathfrak{F} \otimes \Omega_{n}}{\operatorname{trace}} \exp \left(-\beta H_{n}\right)
$$

is finite for all $\beta>0$. We use the notation

$$
\langle X\rangle_{n}=Z_{n}(\beta)^{-1} \underset{\mathfrak{F} \otimes \Omega_{n}}{\operatorname{trace}}\left[\exp \left(-\beta H_{n}\right) X\right]
$$

The Hamiltonian $H_{n}$ has a symmetry which we will exploit: Let $U$ be the unique unitary operator on $\mathfrak{D}(j)$ such that

$$
U^{*} S^{x} U=-S^{x}, \quad U^{*} S^{y} U=-S^{y}, \quad U^{*} S^{z} U=S^{z}
$$

Let $U_{(k)}$ denote a copy of $U$ acting on the $k$ th component of $\Omega_{n}$; then the unitary operator on $\mathfrak{F} \otimes \mathfrak{R}_{n}$ given by

$$
U_{n}=\Gamma(-1) \otimes\left(\prod_{k=1}^{n} U_{(k)}\right)
$$

[^1]satisfies
\[

$$
\begin{array}{rlrl}
U_{n}^{*}\left(1 \otimes S_{n}^{x}\right) U_{n} & =-1 \otimes S_{n}^{x}, & U_{n}^{*}\left(1 \otimes S_{n}^{y}\right) U_{n} & =-1 \otimes S_{n}^{y} \\
U_{n}^{*}\left(1 \otimes S_{n}^{z}\right) U_{n} & =1 \otimes S_{n}^{z}, & U_{n}^{*}(d \Gamma(\cdot) \otimes 1) U_{n} & =d \Gamma(\cdot) \otimes 1  \tag{2}\\
U_{n}^{*}(a(\cdot) \otimes 1) U_{n} & =-a(\cdot) \otimes 1 &
\end{array}
$$
\]

Hence, we have $\left[H_{n}, U_{n}\right]=0$.
To obtain information on the spin polarizations and their fluctuations, we consider the family of Hamiltonians $\left\{K_{n}(\alpha, \mathbf{t}): \alpha \in \mathbb{R}, \mathbf{t}=\left(t_{x}, t_{y}, t_{z}\right) \in \mathbb{R}^{3}\right\}$ defined by

$$
K_{n}(\alpha, \mathbf{t})=H_{n}+\alpha 1 \otimes S_{n}^{x}+n^{-1} 1 \otimes\left[t_{x}\left(S_{n}^{x}\right)^{2}+t_{y}\left(S_{n}^{y}\right)^{2}+t_{z}\left(S_{n}^{z}\right)^{2}\right]
$$

We set

$$
f_{n}(\beta, \alpha, \mathbf{t})=\left(-\beta V_{n}\right)^{-1} \log \underset{\tilde{\mathscr{F}} \otimes \mathfrak{\Omega}_{n}}{\operatorname{trace}} \exp \left[-\beta K_{n}(\alpha, \mathbf{t})\right]
$$

To apply Theorem 3 of Ref. $13,{ }^{3}$ we first notice that, in the terminology of Section 2 of Ref. 13, $K_{n}(\alpha, \mathbf{t})$ is homogeneously decomposable [see (12.8)], with

$$
\begin{aligned}
K_{n}(\alpha, \mathbf{t} ; J)= & d \Gamma\left(\mathfrak{h}_{n}\right) \otimes 1+\varepsilon 1 \otimes{ }^{J} S^{z}+V_{n}^{-1 / 2}\left[a^{*}\left(\lambda_{n}\right)+a\left(\lambda_{n}\right)\right] \otimes{ }^{J} S^{x} \\
& +\alpha 1 \otimes{ }^{J} S^{x}+n^{-1} 1 \otimes\left[t_{x}\left({ }^{J} S^{x}\right)^{2}+t_{y}\left({ }^{J} S^{y}\right)^{2}+t_{z}\left({ }^{J} S^{z}\right)^{2}\right]
\end{aligned}
$$

where $J$ is an integer (resp. half-integer) less than or equal to the integer (resp. half-integer) $n j$. The lower and upper symbols of $K_{n}(\alpha, \mathbf{t} ; J)$ are the operators on $\mathfrak{F}$ given (see table on p. 330 of Ref. 14, or Appendix 3 of Ref. 13), respectively, by $\left[\mathrm{e}=(x, y, z), x^{2}+y^{2}+z^{2}=1\right.$, is in the unit sphere $\left.S^{2} \subset \mathbb{R}^{3}\right]:$

$$
\begin{aligned}
K_{n}^{l}(\alpha, \mathbf{t} ; J, \mathbf{e})= & d \Gamma\left(\mathfrak{h}_{n}\right)+\varepsilon J z 1+V_{n}^{-1 / 2} J x\left[a^{*}\left(\lambda_{n}\right)+a\left(\lambda_{n}\right)\right] \\
& +\alpha J x 1+n^{-1} J\left(J-\frac{1}{2}\right)\left(t_{x} x^{2}+t_{y} y^{2}+t_{z} z^{2}\right) 1 \\
& +(J / 2 n)\left(t_{x}+t_{y}+t_{z}\right) 1 \\
K_{n}^{u}(\alpha, \mathbf{t} ; J, \mathbf{e})= & d \Gamma\left(\mathfrak{h}_{n}\right)+\varepsilon(J+1) z 1+V_{n}^{-1 / 2}(J+1) x\left[a^{*}\left(\lambda_{n}\right)+a\left(\lambda_{n}\right)\right] \\
& +\alpha(J+1) x 1+n^{-1}(J+1)\left(J+\frac{3}{2}\right)\left(t_{x} x^{2}+t_{y} y^{2}+t_{z} z^{2}\right) 1 \\
& -[(J+1) / 2 n]\left(t_{x}+t_{y}+t_{z}\right) 1
\end{aligned}
$$

[^2]The corresponding "lower", and "upper" semiclassical free energies defined by (I4.8) and (I4.9) are easily computed to be

$$
\begin{align*}
& f_{\sim}^{j}(\beta, \alpha, \mathbf{t} ; J / n j, \mathbf{e}) \\
& \equiv(-\beta n)^{-1} \log \underset{\mathcal{F}}{\operatorname{trace}} \exp \left[-\beta K_{n}^{\prime}(\beta, \alpha, \mathbf{t} ; J, \mathbf{e})\right] \\
&= \rho^{-1} f_{n}^{0}(\beta)-\rho A_{n}(J / n)^{2} x^{2}+\varepsilon(J / n) z+\alpha(J / n) x \\
&+n^{-2} J\left(J-\frac{1}{2}\right)\left(t_{x} x^{2}+t_{y} y^{2}+t_{z} z^{2}\right)+\left(J / 2 n^{2}\right)\left(t_{x}+t_{y}+t_{z}\right)  \tag{3a}\\
& f_{n}^{j}(\beta, \alpha, \mathbf{t} ; J / n j, \mathbf{e}) \\
& \equiv(-\beta n)^{-1} \log \underset{\mathfrak{F}}{\operatorname{trace}} \exp \left[-\beta K_{n}^{u}(\alpha, \mathbf{t} ; J, \mathbf{e})\right] \\
&= \rho^{-1} f_{n}^{0}(\beta)-\rho A_{n}[(J+1) / n]^{2} x^{2}+\varepsilon[(J+1) / n] z+\alpha[(J+1) / n] x \\
&+n^{-2}(J+1)\left(J+\frac{3}{2}\right)\left(t_{x} x^{2}+t_{y} y^{2}+t_{z} z^{2}\right) \\
&-\left[(J+1) / 2 n^{2}\right]\left(t_{x}+t_{y}+t_{z}\right) \tag{3b}
\end{align*}
$$

where

$$
f_{n}^{0}(\beta)=\left(-\beta V_{n}\right) \log \underset{\mathscr{F}}{\operatorname{trace}} \exp \left[-\beta d \Gamma\left(\mathfrak{h}_{n}\right)\right]
$$

is the free energy density of the free boson field, and

$$
\Lambda_{n}=\left\|\mathfrak{b}_{n}^{-1 / 2} \lambda_{n}\right\|^{2}=\left\langle\lambda_{n}, \mathfrak{h}_{n}^{-1} \lambda_{n}\right\rangle
$$

For $u \in[0,1]$, let

$$
\begin{aligned}
&{\underset{\sim}{f}}_{n}^{j}(\beta, \alpha, \mathbf{t}; u, \mathbf{e}) \\
&= \rho^{-1} f_{n}^{0}(\beta)-\rho A_{n} j^{2} u^{2} x^{2}+\varepsilon j u z+\alpha j u x \\
&+j^{2} u^{2}\left(t_{x} x^{2}+t_{y} y^{2}+t_{z} z^{2}\right) \\
&+(j / 2 n) u\left[t_{x}\left(1-x^{2}\right)+t_{y}\left(1-y^{2}\right)+t_{z}\left(1-z^{2}\right)\right] \\
& f_{n}^{j}(\beta, \alpha, \mathbf{t} ; u, \mathbf{e}) \\
&= \rho^{-1} f_{n}^{0}(\beta)-\rho A_{n} j^{2} u^{2} x^{2}+\varepsilon j u z+\alpha j u x \\
&+j^{2} u^{2}\left(t_{x} x^{2}+t_{y} y^{2}+t_{z} z^{2}\right) \\
&-\rho A_{n}\left[(2 u n j+1) / n^{2}\right] x^{2}+\varepsilon(z / n)+\alpha(x / n) \\
&+\left[(5 n j u+3) / 2 n^{2}\right]\left(t_{x} x^{2}+t_{y} y^{2}+t_{z} z^{2}\right) \\
&-\left[(n j u+1) / 2 n^{2}\right]\left(t_{x}+t_{y}+t_{z}\right)
\end{aligned}
$$

Then, $f_{n}^{j}(\beta, \alpha, \mathbf{t} ; \cdot)$ and $\tilde{f}_{n}^{j}(\beta, \alpha, \mathbf{t} ; \cdot)$ are continuous functions on $[0,1] \times S^{2}$, coinciding with (3a) and (3b), respectively, for all $u=J / n j$, and converging uniformly to

$$
\begin{aligned}
f^{j}(\beta, \alpha, \mathbf{t} ; u, \mathbf{e})= & \rho^{-1} f^{0}(\beta)-\rho \Lambda j^{2} u^{2} x^{2}+\varepsilon j u z+\alpha j u x \\
& +j^{2} u^{2}\left(t_{x} x^{2}+t_{y} y^{2}+t_{z} z^{2}\right)
\end{aligned}
$$

if

$$
\begin{equation*}
f^{0}(\beta)=\lim _{V_{n} \rightarrow \infty} f_{n}^{0}(\beta) \quad \text { and } \quad \Lambda=\lim _{n \rightarrow \infty} \Lambda_{n} \tag{4}
\end{equation*}
$$

both exist.
This verifies the conditions of Theorem 3 of Ref. 13, and proves the following result:

Theorem. If condition (4) is met for some $\beta>0$, then

$$
\lim _{\substack{n \rightarrow \infty \\ \rho=\text { const }}} f_{n}(\beta, \alpha, \mathbf{t})=f(\beta, \alpha, \mathbf{t})
$$

exists and is given by

$$
f(\beta, \alpha, \mathbf{t})=f^{0}(\beta)+\rho \inf _{u \in[0,1]} \inf _{\mathbf{e} \in S^{2}}\left[\varphi^{j}(\varepsilon, \alpha, \mathbf{t} ; u, \mathbf{e})-\beta^{-1} I^{j}(u)\right]
$$

where

$$
\varphi^{j}(\varepsilon, \alpha, \mathbf{t} ; u, \mathbf{e})=j c u z+j \alpha u x+j^{2} u^{2}\left[\left(t_{x}-\rho \Lambda\right) x^{2}+t_{y} y^{2}+t_{z} z^{2}\right]
$$

and ${ }^{4}$

$$
\begin{equation*}
I^{j}(u)=\inf _{a \geqslant 0}\left\{\log \frac{\sinh [a(2 j+1) / 2 j]}{\sinh (a / 2 j)}-a u\right\}, \quad u \in[0,1] \tag{5}
\end{equation*}
$$

We define the mean free energy $f_{n}$ by $^{5}$

$$
f_{n}(\beta)=\left(-\beta V_{n}\right)^{-1} \log Z_{n}(\beta)
$$

the mean spin-polarization vector $\mathbf{P}_{n}$ by

$$
\mathbf{P}_{n}(\beta)=n^{-1}\left\langle 1 \otimes \mathbf{S}_{n}\right\rangle_{n}
$$

[^3]and the (Hermitian, $3 \times 3$ ) two-correlation matrix $\mathfrak{D}_{n}$ by
$$
\mathfrak{D}_{n}^{a, b}(\beta)=n^{-2}\left(\left\langle 1 \otimes S_{n}^{a} S_{n}^{b}\right\rangle_{n}-\left\langle 1 \otimes S_{n}^{a}\right\rangle_{n}\left\langle 1 \otimes S_{n}^{b}\right\rangle_{n}\right), \quad a, b \in\{x, y, z\}
$$

By (2), the $x$ and $y$ components of $\mathbf{P}_{n}$ are both zero. Moreover,

$$
\begin{align*}
f_{n}(\beta) & =f_{n}(\beta, 0, \mathbf{0})  \tag{6}\\
P_{n}^{z}(\beta) & =\rho^{-1}\left(\partial f_{n} / \partial \varepsilon\right)(\beta)  \tag{7}\\
\mathfrak{D}_{n}^{a a}(\beta) & =\rho^{-1}\left(\partial f_{n} / \partial t_{a}\right)(\beta, 0 ; \mathbf{0})-P_{n}^{a}(\beta)^{2}, \quad a \in\{x, y, z\} \tag{8}
\end{align*}
$$

To proceed, we assume that condition (4) is met for every $\beta>0$, and that $A>0 .{ }^{6}$ The solution of the variational problem obtained in the theorem when at most one of the four real parameters $\alpha$, $\mathbf{t}$ is not zero is quite straightforward; we comment on this in Appendix B. The essential ingredient is the strict concavity of the function $I^{j}(\cdot)$, which is differentiable on $(0,1)$ with strictly decreasing derivative $\left(I^{j}\right)^{\prime}$ satisfying

$$
\lim _{u \downarrow 0}\left(I^{j}\right)^{\prime}(u)=0, \quad \text { and } \quad \lim _{u \uparrow 1}\left(I^{j}\right)^{\prime}=-\infty
$$

We first identify a critical spin density

$$
\rho_{c}=|\varepsilon| / 2 j \Lambda
$$

and a $j$ - and density-dependent, critical reciprocal temperature ${ }^{7}$

$$
\beta_{c}:=\left\{\begin{array}{lll}
+\infty & \text { if } & \rho \leqslant \rho_{c} \\
(-j|\varepsilon|)^{-1}\left(I^{j}\right)^{\prime}(|\varepsilon| / 2 j \Lambda \rho) & \text { if } & \rho>\rho_{c}
\end{array}\right.
$$

For every $\beta>0$, the equation

$$
j|\varepsilon|+\beta^{-1}\left(I^{j}\right)^{\prime}(u)=0, \quad u \in[0,1]
$$

admits a unique solution $\mu(\beta) .^{8}$ The function $\mu(\cdot)$ is increasing and continuous on $(0, \infty)$ with $\lim _{\beta \downarrow 0} \mu(\beta)=0$ and $\lim _{\beta \uparrow \infty} \mu(\beta)=1$ when $\varepsilon \neq 0$. If $\rho>\rho_{c}$, then for every $\beta \geqslant \beta_{c}$, the equation

$$
2 j^{2} \rho \Lambda u+\beta^{-1}\left(I^{j}\right)^{\prime}(u)=0, \quad u \in[0,1]
$$

admits a unique nonzero solution $\xi(\beta)$. The function $\xi(\cdot)$ is increasing and

[^4]continuous on $\left[\beta_{c}, \infty\right)$ and satisfies $\xi\left(\beta_{c}\right)=|\varepsilon| / 2 j \Lambda \rho, \lim _{\beta \dagger \infty} \xi(\beta)=1$. We let
$$
\eta=|\varepsilon| / 2 j \rho \Lambda
$$

The quantity $\eta$ acts as an order parameter: $\eta \geqslant 1$ for $\rho \leqslant \rho_{c}$, and $\eta<1$ for $\rho>\rho_{c}$.

When $j=1 / 2$ the above can be made more explicit, since

$$
\begin{aligned}
I^{1 / 2}(u) & =-\frac{1}{2}(1+u) \log \left[\frac{1}{2}(1+u)\right]-\frac{1}{2}(1-u) \log \left[\frac{1}{2}(1-u)\right] \\
\left(I^{1 / 2}\right)^{\prime}(u) & =-\frac{1}{2} \log [(1+u) /(1-u)]=-\operatorname{arctanh}(u)
\end{aligned}
$$

One has $\rho_{c}=|\varepsilon| / \rho \Lambda, \beta_{c}=(2 /|\varepsilon|) \operatorname{arctanh}(|\varepsilon| / \rho \Lambda)$ for $\rho>\rho_{c}$,

$$
\mu(\beta)=\tanh \left(\frac{1}{2} \beta|\varepsilon|\right)
$$

and $\xi$ is the solution of

$$
u=\tanh \left(\frac{1}{2} \beta \rho \Lambda u\right), \quad \beta>\beta_{c}
$$

### 2.1. The Free Energy and Entropy Densities

We use (6). The solution of the variational problem for $\alpha=0, t=0$, is discussed in Appendix B; the result is ${ }^{9}$

$$
\Delta f(\beta)=-\rho \begin{cases}j|\varepsilon| \mu(\beta)+\beta^{-1} I^{j}(\mu(\beta)) & \text { for } \beta \leqslant \beta_{c} \\ j^{2} \rho \Lambda\left[\xi(\beta)^{2}+\eta^{2}\right]+\beta^{-1} I^{j}(\xi(\beta)) & \text { for } \beta>\beta_{c}\end{cases}
$$

For $j=\frac{1}{2}$, this reads

$$
\begin{aligned}
\Delta f(\beta)= & -\rho \beta^{-1} \log \left[2 \cosh \left(\frac{1}{2} \beta \varepsilon\right)\right] \quad \beta \leqslant \beta_{c} \\
\Delta f(\beta)= & -\rho \beta^{-1} \log \left\{2 \cosh \left[\frac{1}{2} \beta \rho A \xi(\beta)\right]\right\} \\
& +\frac{1}{4} \rho^{2} \Lambda\left[\xi(\beta)^{2}-(\varepsilon / \rho \Lambda)^{2}\right], \quad \beta>\beta_{c}
\end{aligned}
$$

The entropy density $s$ is given by $k \beta^{2} \partial f / \partial \beta$; we obtain

$$
\Delta s(\beta)=k \rho \begin{cases}I^{j}(\mu(\beta)) & \text { for } \quad \beta \leqslant \beta_{c} \\ I^{j}(\xi(\beta)) & \text { for } \\ \beta>\beta_{c}\end{cases}
$$

We recover, but for infinitely many boson modes and arbitrary spins, the second-order phase transition discovered by Hepp and Lieb ${ }^{(4)}$ : The second derivative of $\Delta f$ is discontinuous at $\beta_{c}$. Notice also that $\Delta f$ does not depend on the coupling (i.e., on $A$ ) above the critical temperature, this being always the case if the density is below the critical density.

[^5]
### 2.2. The Spin Polarizations and Their Fluctuations

We have already remarked that $P^{x}$ and $P^{y}$ are both zero; to compute $P^{z}$, we use (7), verify that $f(\beta)$ is differentiable with respect to $\varepsilon$, and use Griffiths' lemma (see, e.g., Lemma 1 in the Appendix of Ref. 5) on the sequence $f_{n}(\beta)$ of functions which are concave in $\varepsilon$. We obtain

$$
P^{z}(\beta)= \begin{cases}-j \operatorname{sgn}(\varepsilon) \mu(\beta) & \text { for } \beta \leqslant \beta_{c} \\ -\varepsilon / 2 \rho \Lambda & \text { for } \beta>\beta_{c}\end{cases}
$$

$P^{z}$ is a continuous function of $\beta$ with a discontinuous derivative at $\beta_{c}$. Notice that below the critical temperature, $P^{z}$ is independent of the temperature and of the spin magnitude $j$. Figure 1 shows $P^{z}$ for $j=\frac{1}{2}$. ${ }^{10}$

To obtain the dispersions $\mathfrak{D}^{a a}(a=x, y, z)$, we use (8); the functions $f_{n}(\beta, \alpha, \mathbf{t})$ are concave in the components of $\mathbf{t}$. We set $\alpha=0$ and all components of $t$ equal to zero except $t_{a}$ in the variational problem of the
${ }^{10} P^{z}(\beta)=-\frac{1}{2} \tanh \left(\frac{1}{2} \beta \varepsilon\right)$ for $\beta \leqslant \beta_{c}$ and $-\frac{1}{2} \varepsilon / \rho A$ for $\beta>\beta_{c}$.


Fig. 1. Plot of $P^{2}$ versus $T$ for $j=\frac{1}{2}$ and $\varepsilon=1$. ( $\cdots$ ) $\eta \geqslant 1$; (一) $\eta=\frac{1}{2}$ [ $k T_{c}=$ $\left(2 \operatorname{arctanh} \frac{1}{2}\right)^{-1} \simeq 0.910$ ].
theorem, then verify differentiability with respect to $t_{a}$, and use Griffiths' lemma. The results are

$$
\begin{gathered}
\mathfrak{D}^{y y}(\beta)=\mathfrak{D}^{z z}(\beta)=0 \\
\mathfrak{D}^{x x}(\beta)= \begin{cases}0 & \text { for } \beta \leqslant \beta_{c} \\
j^{2}\left[\xi(\beta)^{2}-\eta^{2}\right] & \text { for } \beta>\beta_{c}\end{cases}
\end{gathered}
$$

Figure 2 shows $\mathfrak{D}^{x x}$ for $j=\frac{1}{2} .{ }^{11}$
Since the $y$ and $z$ polarizations are dispersion-free, we conclude from the Schwarz inequality for states, that

$$
\begin{aligned}
\mathfrak{D}^{a b}(\beta)=0 & \text { for all } \beta>0 \\
& \text { and all } a, b \in\{x, y, z\} \text { except } a=b=x
\end{aligned}
$$

With these results, we can compute the limiting value of the energy density $u_{n}(\beta)=V_{n}^{-1}\left\langle H_{n}\right\rangle_{n}$. We obtain

$$
\begin{equation*}
\Delta u(\beta)=\rho \varepsilon P^{z}(\beta)-\rho^{2} \Lambda \mathfrak{D}^{x x}(\beta) \tag{9}
\end{equation*}
$$

Figure 3 shows $\Delta u$ for $j=\frac{1}{2}$.
${ }^{11} \mathcal{D}^{x x}(\beta)=0$ for $\beta \leqslant \beta_{c}$ and $\frac{1}{4}\left[\xi(\beta)-(\varepsilon / \rho \Lambda)^{2}\right]$ for $\beta>\beta_{c}$.


Fig. 2. Plot of $\mathfrak{D}^{x x}$ versus $T$ for $j=\frac{1}{2}, \varepsilon=1$, and $\eta=\frac{1}{2}\left(k T_{c} \simeq 0.910\right)$.


Fig. 3. Plot of $\rho^{-1} \Delta u$ versus $T$ for $j=\frac{1}{2}$ and $\varepsilon=1$.( $\left.\cdots\right) \eta \geqslant 1$; (一) $\eta=\frac{1}{2}\left(k T_{c} \simeq 0.910\right)$.
To make the phase transition more transparent, we consider the $x$ polarization for the Hamiltonian $H_{n}$ perturbed by $\alpha\left(1 \otimes S_{n}^{x}\right)$ :

$$
P_{n}^{x}(\beta, \alpha) \equiv n^{-1}\left\langle 1 \otimes S_{n}^{x}\right\rangle_{K_{n}(\alpha, 0)}=\left(\partial f_{n} / \partial \alpha\right)(\beta, \alpha, \mathbf{0})
$$

We find (see Appendix B) that $f(\beta, \cdot, \mathbf{0})$ is a function of $|\alpha|$, and is differentiable on $\mathbb{P} \backslash\{0\}$. For $\beta \leqslant \beta_{c}, \lim _{\alpha \rightarrow 0} P^{x}(\beta, \alpha)=0$; but for $\beta>\beta_{c}\left[P^{x}(\beta, \cdot)\right.$ is odd]

$$
-\lim _{\alpha \uparrow 0} P_{n}^{x}(\beta, \alpha)=\lim _{\alpha \downarrow 0} P^{x}(\beta, \alpha)=j\left[\xi(\beta)^{2}-\eta^{2}\right]^{1 / 2}
$$

Figure 4 shows $P^{x}$ for $j=\frac{1}{2}$.

### 2.3. The Contribution of the Bosons to the Energy

For finite volume, the contribution of the bosons to the energy density is $u_{n}^{b}(\beta)=V_{n}^{-1}\left\langle d \Gamma\left(\mathfrak{h}_{n}\right) \otimes 1\right\rangle_{n}$. We proceed as before and let $g_{n}(\beta, \gamma)$ be the specific free energy for the Hamiltonian obtained from $H_{n}$ by multiplying $\mathfrak{h}_{n}$ with $\gamma>0$. We have

$$
\begin{equation*}
u_{n}^{b}(\beta)=\left(\partial g_{n} / \partial \gamma\right)(\beta, 1) \tag{10}
\end{equation*}
$$



Fig. 4. Plot of $P^{x}$ versus $\alpha$ for $j=\frac{1}{2}, \varepsilon=1$, and $\eta=\frac{1}{2}\left(k T_{c} \simeq 0.910\right) .(\cdots) k T=0.5(\cdots)$ $k T=0.8 ;(--) k T=1 ;(-) k T=2$.

We have already computed the limit $g(\beta, \gamma)$ of $g_{n}(\beta, \gamma)$; by concavity of $g_{n}$ in $\gamma$, we obtain from (10) that

$$
\begin{equation*}
\Delta u^{b}(\beta)=\rho^{2} A \mathfrak{D}^{x x}(\beta) \tag{11}
\end{equation*}
$$

Combining (11) and (9), we obtain

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ \rho=\text { const }}} V_{n}^{-3 / 2}\left\langle\left[a^{*}\left(\lambda_{n}\right)+a\left(\lambda_{n}\right)\right] \otimes S_{n}^{x}\right\rangle_{n}=-2 \rho^{2} \Lambda \mathfrak{D}^{x x}(\beta) \tag{12}
\end{equation*}
$$

We see that (12) factorizes to

$$
\lim _{\substack{n \rightarrow \infty \\ \rho=\text { const }}} V_{n}^{-1 / 2}\left\langle\left[a^{*}\left(\lambda_{n}\right)+a\left(\lambda_{n}\right)\right] \otimes 1\right\rangle_{n} \lim _{\substack{n \rightarrow \infty \\ \rho=\text { const }}} V_{n}^{-1}\left\langle 1 \otimes S_{n}^{x}\right\rangle_{n} \quad(\equiv 0)
$$

for $\beta \leqslant \beta_{c}$ but does not factorize for $\beta>\beta_{c}$.

### 2.4. The Boson-Number Density

For $\omega \in[0, \infty]$, let

$$
\vartheta_{\omega}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x<\omega \\
0 & \text { if } & x \geqslant \omega
\end{array} \quad(x \in \mathbb{R})\right.
$$

The number operator for the bosons of energy strictly less than $\omega$ is given by

$$
N_{n}(\omega)=d \Gamma\left(\vartheta_{\omega}\left(\mathfrak{h}_{n}\right)\right)
$$

Notice that $N_{n}(0)=0$ and $N_{n}(\infty)=N_{n}$ is the total boson number operator.
Consider the number density for the bosons of energy strictly less than $\omega$ :

$$
\sigma_{n}(\beta ; \omega)=V_{n}^{-1}\left\langle N_{n}(\omega) \otimes 1\right\rangle_{n}
$$

Introducing the auxiliary Hamiltonian

$$
M_{n}(\mu ; \omega)=H_{n}-\mu N_{n}(\omega) \otimes 1, \quad \mu \leqslant 0
$$

and the associated "pressure"

$$
p_{n}(\beta, \mu ; \omega)=\left(\beta V_{n}\right)^{-1} \log \underset{\boldsymbol{\delta} \otimes \Omega_{n}}{\operatorname{trace}} \exp \left[-\beta M_{n}(\mu ; \omega)\right]
$$

we have

$$
\begin{equation*}
\sigma_{n}(\beta ; \omega)=\left(\partial p_{n} / \partial \mu\right)(\beta, 0 ; \omega) \tag{13}
\end{equation*}
$$

Since $M_{n}(\mu ; \omega)$ is obtained from $H_{n}$ by replacing $\mathfrak{h}_{n}$ by $\mathfrak{h}_{n}-\mu \vartheta_{\omega}\left(\mathfrak{h}_{n}\right)$, which is again a strictly positive self-adjoint operator, we may apply the theorem, replacing $\Lambda_{n}$ by

$$
\Lambda_{n}(\mu ; \omega)=\left\langle\lambda_{n},\left[\mathfrak{h}_{n}-\mu \vartheta_{\omega}\left(\mathfrak{h}_{n}\right)\right]^{-1} \lambda_{n}\right\rangle
$$

and thus condition (4) by

$$
\begin{aligned}
p^{0}(\beta, \mu ; \omega) & =\lim _{n \rightarrow \infty}\left(\beta V_{n}\right)^{-1} \log \operatorname{trace} \exp \left\{-\beta\left[d \Gamma\left(\mathfrak{b}_{n}\right)-\mu N_{n}(\omega)\right]\right\} \\
\Lambda(\mu ; \omega) & =\lim _{n \rightarrow \infty} A_{n}(\mu ; \omega)
\end{aligned}
$$

both exist. This guarantees the existence of $p(\beta, \mu ; \omega)$, and gives us a variational formula for $\Delta p(\beta, \mu ; \omega)$ :

$$
\Delta p(\beta, \mu ; \omega)=\rho \sup _{u \in[0,1]} \sup _{e \in S^{2}}\left[-j \varepsilon u z+j^{2} \rho \Lambda(\mu ; \omega) u^{2} x^{2}+\beta^{-1} I^{j}(u)\right]
$$

In order to proceed, we disregard the subtleties, which could appear already for free bosons (see Ref. 15), and assume that $\sigma(\beta ; \omega)$ exists (for some $\beta>0$ and $\omega>0$ ). We also assume that $p^{0}(\beta, \cdot ; \omega)$ and $\Lambda(\cdot ; \omega)$ exist for $\mu$ in an arbitrarily small interval $[-a, 0], a>0$. By convexity, ${ }^{12}$ these functions are continuous in the open interval $(-a, 0)$. We suppose that they are continuous from the left at $\mu=0$. Finally, we assume that $\Lambda(\cdot ; \omega)$ is differentiable in $(-a, 0)$ with derivative $\Lambda^{\prime}(\cdot ; \omega)$ and that

$$
\lim _{\mu \uparrow 0} \Lambda^{\prime}(\mu ; \omega)=\Lambda^{\prime}(\omega)
$$

exists. Solving the variational problem and using (13), we can now claim

$$
\Delta \sigma(\beta ; \omega)=\rho^{2} \mathfrak{D}^{x x}(\beta) \Lambda^{\prime}(\omega)
$$

We observe a (positive) contribution from the spins to the boson number density only below the critical temperature, and this contribution is nondecreasing in $\omega$.

## APPENDIX A

For completeness, we comment on the self-adjointness of the Hamiltonian $H_{n}$ defined by (1). We drop the index $n$. Assuming that $\exp (-\beta \mathfrak{h})$ is trace-class, we could proceed by rewriting $H$ in the form of Section 1; we consider the general case where $\mathfrak{h}$ is assumed to be positive and injective (i.e., $\mathfrak{h}^{-1}$ exists), and $\lambda$ lies in the domain of $\mathfrak{h}^{-1 / 2}$

Lemma. Let $\mathfrak{b}$ be a positive, injective self-adjoint operator on the Hilbert space $\mathfrak{h}$; let $\lambda \in \operatorname{Dom}\left(\mathfrak{h}^{-1 / 2}\right)$ and set $\Lambda=\left\|\mathfrak{h}^{-1 / 2} \lambda\right\|^{2}$. For complex $c$, the operator

$$
\mathscr{H}=d \Gamma(\mathfrak{h})+c a^{*}(\lambda)+\bar{c} a(\lambda)
$$

on the symmetric Fock space built upon $\mathfrak{h}$ is self-adjoint on $\operatorname{Dom}(d \Gamma(\mathfrak{h}))$, and bounded below by $-|c|^{2} \Lambda$. If, more restrictively, ${ }^{13} \lambda \in \operatorname{Dom}\left(\mathfrak{h}^{-1}\right)$, then

$$
\left.\mathscr{H}=W(-c \mathfrak{h})^{-1} \lambda\right) d \Gamma(\mathfrak{h}) W\left(c \mathfrak{h}^{-1} \lambda\right)-|c|^{2} \Lambda 1
$$

where the unitary operator $W$ is given by

$$
W(f)=\exp \left[\overline{a^{*}(f)-a(f)}\right], \quad f \in \mathfrak{h}
$$

[^6]Proof. The obvious operator inequality $\left|\mathfrak{h}^{-1 / 2} \lambda\right\rangle\left\langle\mathfrak{h}^{-1 / 2} \lambda\right| \leqslant \Lambda 1$ entails $|\lambda\rangle\langle\lambda| \leqslant \Lambda \mathfrak{h}$, which in turn implies that $a^{*}(\lambda) a(\lambda) \leqslant \Lambda d \Gamma(\mathfrak{h})$. From this one concludes that for $f \in \operatorname{Dom}(d \Gamma(\mathfrak{h}))$,

$$
\left\|\left[a^{*}(\lambda)+a(\lambda)\right] f\right\| \leqslant a\|d \Gamma(\mathfrak{h}) f\|+\left(A a^{-1}+\|\lambda\|\right)\|f\| \quad \text { for all } 0<a<1
$$

The Kato-Rellich theorem then establishes the self-adjointness claim. Moreover, if $\lambda \neq 0$,

$$
\begin{aligned}
\mathscr{H} & \geqslant \Lambda^{-1} a^{*}(\lambda) a(\lambda)+c a^{*}(\lambda)+\bar{c} a(\lambda) \\
& =\Lambda^{-1}[a(\lambda)+c \Lambda]^{*}[a(\lambda)+c \Lambda]-|c|^{2} \Lambda
\end{aligned}
$$

which gives the lower bound. If $\lambda \in \operatorname{Dom}\left(\mathfrak{h}^{-1}\right)$, then the claim follows from the quadratures formula ${ }^{(16)}$ :

$$
W(f)^{*} d \Gamma(\mathfrak{h}) W(f)=d \Gamma(\mathfrak{h})+a^{*}(\mathfrak{h} f)+a(\mathfrak{h} f)+\langle f, \mathfrak{h} f\rangle, \quad f \in \operatorname{Dom}(\mathfrak{h})
$$

Consider $H\left(\equiv H_{n}\right)$; it suffices to consider $H^{0}=H-\varepsilon\left(1 \otimes S_{n}^{z}\right)$, since $H$ is a bounded perturbation of $H^{0}$. The spectrum of $S_{n}^{x}$ consists of simple eigenvalues $\left\{E(k): k=1,2, \ldots,(2 j+1)^{n} \equiv N\right\}$; let $P(k)$ denote the associated spectral projections. We may then write

$$
H^{0}=\sum_{k=1}^{N}\left\{d \Gamma(\mathfrak{h})+V^{-1 / 2} E(k)\left[a^{*}(\lambda)+a(\lambda)\right]\right\} \otimes P(k)
$$

If, then, $\lambda \in \operatorname{Dom}\left(\mathfrak{h}^{-1 / 2}\right)$, we conclude from the lemma that $H^{0}$ is selfadjoint on $\operatorname{Dom}(d \Gamma(\mathfrak{h}) \otimes 1)$ and bounded below by

$$
-(\Lambda / V) \sum_{k=1}^{N} E(k)^{2}[1 \otimes P(k)]=-(\Lambda / V) 1 \otimes\left(S_{n}^{x}\right)^{2}
$$

which is in turn bounded below by $-\left(A n^{2} j^{2} / V\right)$.
If $\lambda \in \operatorname{Dom}\left(\mathfrak{h}^{-1}\right)$, then we have

$$
H^{0}=U^{*}[d \Gamma(\mathfrak{h}) \otimes 1] U-(A / V)\left[1 \otimes\left(S_{n}^{x}\right)^{2}\right]
$$

where the unitary $U$ is given by

$$
U=\sum_{k=1}^{N} W\left(V^{-1 / 2} E(k) \mathfrak{h}^{-1} \lambda\right) \otimes P(k)
$$

Finally, if $\exp (-\beta \mathfrak{h})$ is trace-class, then so is $\exp [-\beta d \Gamma(\mathfrak{h})]$; since $\mathfrak{h}^{-1}$ is bounded, the above formulas combined with, say, the GoldenThompson inequality show that $\exp (-\beta H)$ is trace-class.

## APPENDIX B

We comment briefly on the solution of the variational problem obtained in the theorem. We give some details only in the case $\mathbf{t}=\mathbf{0}$.

The $I^{j}$ defined by (5) is clearly concave and decreasing. Moreover, $I^{j}$ is differentiable in $(0,1)$ with derivative $\left(I^{j}\right)^{\prime}$ given by

$$
\left(I^{j}\right)^{\prime}(u)=-a(u), \quad u \in(0,1)
$$

where $a(u)$ is the unique positive solution of the equation

$$
[(2 j+1) / 2 j] \operatorname{coth}[a(2 j+1) / 2 j]-(1 / 2 j) \operatorname{coth}(a / 2 j)=u
$$

$\left(I^{j}\right)^{\prime}$ is strictly decreasing, negative, with $\lim _{u \downarrow 0}\left(I^{j}\right)^{\prime}(u)=0$ and $\lim _{u \uparrow 1}\left(I^{j}\right)^{\prime}(u)=-\infty$. One has $I^{j}(0)=\log (2 j+1), I^{j}(1)=0$, and

$$
I^{j}(u)=-u a(u)+\log \frac{\sinh [a(u)(2 j+1) / 2 j]}{\sinh [a(u) / 2 j]}
$$

Moreover, $\left(I^{j}\right)^{\prime}$ behaves as $[-3 j /(j+1)] u$ when $u \downarrow 0$, and $\lim _{u \downarrow 0}\left(I^{j}\right)^{\prime \prime}(u)$ $=-3 j /(j+1)$.

Let

$$
\mathscr{S}(\varepsilon, \alpha, \beta) \equiv \sup _{u \in[0,1]} \sup _{\mathrm{e} \in S^{2}}\left[\beta^{-1} I^{j}(u)-j u(\varepsilon z+\alpha x)+j^{2} \rho A u^{2} x^{2}\right]
$$

where $\varepsilon$ and $\alpha$ are real, $\rho A>0$, and $\beta>0$. Clearly,

$$
\mathscr{P}(\varepsilon, \alpha, \beta)=\sup _{u, z \in(0,1)}\left[\beta^{-1} I^{j}(u)+M^{j}(u, z)\right]
$$

where the function $M^{j}$ on $(0,1) \times(0,1)$ is defined as

$$
M^{j}(u, z)=j u\left[|\varepsilon| z+|\alpha|\left(1-z^{2}\right)^{1 / 2}\right]+j^{2} \rho A u^{2}\left(1-z^{2}\right)
$$

The derivative of $M^{j}(u, \cdot)$ with respect to $z$ is [notice that we are now working in the open interval $(0,1)]$

$$
M_{z}^{j}(u, z)=j u\left[|\varepsilon|-|\alpha| z\left(1-z^{2}\right)^{-1 / 2}-2 j \rho A u z\right]
$$

We discuss the solutions $z$ of $M_{z}^{j}(u, z)=0$. If $\varepsilon=0$, then $M_{z}^{j}(u, \cdot)<0$. If $\varepsilon \neq 0, \alpha=0$, then $M_{z}^{j}(u, \cdot)>0$ if $|\varepsilon| \geqslant 2 j \rho \Lambda u$, and if $|\varepsilon|<2 j \rho \Lambda u$, then $M_{z}^{j}(u, z)=0$ if $z=(|\varepsilon| / 2 j \rho A u)$. If $\varepsilon$ and $\alpha$ are not zero, then there is a unique solution, which we denote by $\zeta(u ; \varepsilon, \alpha)$. We verify that

$$
\zeta(u ; \varepsilon, \alpha) \leqslant \min \left\{(|\varepsilon| / 2 j \rho \Lambda u),|\varepsilon| /\left(\varepsilon^{2}+\alpha^{2}\right)^{1 / 2}\right\}
$$

and that

$$
\begin{aligned}
& \lim _{u \downarrow 0} \xi(u, \varepsilon, \alpha)=|\varepsilon| /\left(\varepsilon^{2}+\alpha^{2}\right)^{1 / 2},
\end{aligned} \lim _{\varepsilon \rightarrow 0} \zeta(u, \varepsilon, \alpha)=0 .\left\{\begin{array}{lll}
|\varepsilon| / 2 j \rho \Lambda u & \text { if } u \geqslant|\varepsilon| / 2 j \rho \Lambda \\
1 & \text { if } & u \leqslant|\varepsilon| / 2 j \rho \Lambda
\end{array} \lim _{\alpha \rightarrow 0} \zeta(u, \varepsilon, \alpha)=\left[\begin{array}{l}
\end{array}\right.\right.
$$

We define $\zeta(u ; \varepsilon, \alpha)$ for arbitrary real $\varepsilon$ and $\alpha$ using the above limits for $\zeta(u ; 0, \alpha)$ and $\zeta(u ; \varepsilon, 0)$, and verify that indeed

$$
\sup _{z \in(0,1)} M^{j}(u, z)=M^{j}(u, \zeta(u ; \varepsilon, \alpha)) \quad \text { for all } \quad u \in(0,1)
$$

Moreover, $\zeta(\cdot ; \varepsilon, \alpha)$ is decreasing and differentiable, $\zeta(u ; \cdot, \alpha)$ is even, increasing in $|\varepsilon|$, and differentiable, and $\zeta(u ; \varepsilon, \cdot)$ is even, decreasing in $|\alpha|$, and differentiable.

We can now write

$$
\mathscr{S}(\varepsilon, \alpha, \beta)=\sup _{u \in(0,1)}\left\{\beta^{-1} I^{j}(u)+M^{j}(u, \zeta(u ; \varepsilon, \alpha))\right\}
$$

The condition for the maximum is then

$$
\begin{align*}
& j|\varepsilon| \zeta(u ; \varepsilon, \alpha)+j|\alpha|\left[1-\zeta(u ; \varepsilon, \alpha)^{2}\right]^{1 / 2}+2 j^{2} \rho \Lambda u\left[1-\zeta(u ; \varepsilon, \alpha)^{2}\right] \\
& \quad=-\beta^{-1}\left(I^{j}\right)^{\prime}(u) \tag{*}
\end{align*}
$$

The left-hand side of $\left({ }^{*}\right)$ is a positive, increasing function of $u$, converging to $j\left(\varepsilon^{2}+\alpha^{2}\right)^{1 / 2}$ when $u \downarrow 0$, and having a finite, nonzero limit as $u \uparrow 1$.

If either $\varepsilon$ or $\alpha$ is not zero, the properties of $\left(I^{j}\right)^{\prime}$ imply that $\left(^{*}\right)$ has a unique solution $\psi \equiv \psi(\varepsilon, \alpha, \beta)$ for every $\beta>0$. We then verify that $\mathscr{S}(\varepsilon, \alpha, \beta)=\beta^{-1} I^{j}(\psi)+M^{j}(\psi, \zeta(\psi ; \varepsilon, \alpha))$. It follows that

$$
\begin{aligned}
& \{\partial \mathscr{S} / \partial \varepsilon\}(\varepsilon, \alpha, \beta)=j \operatorname{sgn}(\varepsilon) \psi \zeta(\psi ; \varepsilon, \alpha) \\
& \{\partial \mathscr{S} / \partial \alpha\}(\varepsilon, \alpha, \beta)=j \operatorname{sgn}(\alpha) \psi\left[1-\zeta(\psi ; \varepsilon, \alpha)^{2}\right]^{1 / 2} \\
& \{\partial \mathscr{S} / \partial \beta\}(\varepsilon, \alpha, \beta)=-\beta^{-2} I^{j}(\psi)
\end{aligned}
$$

If both $\varepsilon$ and $\alpha$ are zero, then (*) reads

$$
\begin{equation*}
2 j^{2} \rho A u=-\beta^{-1}\left(I^{j}\right)^{\prime}(u) \tag{**}
\end{equation*}
$$

which, by the properties of $\left(I^{j}\right)^{\prime}$, admits a solution $\xi(\beta)$ in $(0,1)$ if and only if

$$
2 j^{2} \rho A>-\beta^{-1} \lim _{u \downarrow 0}\left(I^{j}\right)^{\prime \prime}(u)=3 \beta^{-1} j /(j+1)
$$

We infer that $\beta>\beta_{c}^{0} \equiv 3 / 2 j(j+1) \rho A$. The function $\xi(\cdot)$ is increasing and continuous on ( $\beta_{c}^{0}, \infty$ ), with

$$
\lim _{\beta \backslash \beta_{c}^{0}} \xi(\beta)=0 \quad \text { and } \quad \lim _{\beta \nmid \infty} \xi(\beta)=1
$$

We have

$$
\mathscr{S}(0,0, \beta)=\left\{\begin{array}{lll}
\beta^{-1} I^{j}(0) & \text { for } & \beta \leqslant \beta_{c}^{0} \\
\beta^{-1} I^{j}(\xi(\beta))+j^{2} \rho \Lambda \xi(\beta)^{2} & \text { for } & \beta>\beta_{c}^{0}
\end{array}\right.
$$

We now discuss the case $\alpha=0$. We have $\mathscr{P}(\varepsilon, 0, \beta)=\max \{A, B\}$, where [using the definition of $\zeta(u, \varepsilon, 0)$ and $\eta \equiv|\varepsilon| / 2 j \rho A$ ]

$$
\begin{aligned}
& A \equiv \sup _{u \in[0, \min \{\eta, 1\}]}\left\{j|\varepsilon| u+\beta^{-1} I^{j}(u)\right\} \\
& B \equiv \sup _{u \in(\min \{\eta, 1\}, 1]}\left\{\left(\varepsilon^{2} / 4 \rho A\right)+j^{2} \rho A u^{2}+\beta^{-1} I^{j}(u)\right\}
\end{aligned}
$$

Consider $A$. If $\varepsilon=0$, then $\eta=0$ and $A=\beta^{-1} I^{j}(0)$. Let $\varepsilon \neq 0$; the extremal condition ( ${ }^{*}$ ) reads

$$
\begin{equation*}
j|\varepsilon|=-\beta^{-1}\left(I^{j}\right)^{\prime}(u) \tag{}
\end{equation*}
$$

which admits a unique solution $\mu(\beta)$ in $(0,1)$ for every $\beta>0$. The function $\mu(\cdot)$ is strictly increasing, and, when $\eta<1, \mu(\beta) \leqslant \eta$ if and only if $\beta \leqslant \beta_{c}$, where $\beta_{c}$ is the solution of $\mu\left(\beta_{c}\right)=\eta$, that is,

$$
\beta_{c} j|\varepsilon|=-\left(I^{\prime}\right)^{\prime}(\eta), \quad \eta<1
$$

We verify that indeed $\lim _{\varepsilon \rightarrow 0} \beta_{c}=\beta_{c}^{0}$. We incorporate the case $\varepsilon=0$ consistently by putting $\mu(\beta) \equiv 0$ for $\varepsilon=0$. We have then

$$
A=\left\{\begin{array}{ll}
j|\varepsilon| \mu(\beta)+\beta^{-1} I^{j}(\mu(\beta)) & \text { for } \beta \leqslant \beta_{c} \\
j|\varepsilon| \eta+\beta^{-1} I^{j}(\eta) & \text { for } \beta>\beta_{c}
\end{array} \text { (hence } \eta<1\right. \text { ) }
$$

Consider $B$, which does not trivialize only when $\eta<1$. The extremal condition is then ( ${ }^{* *}$ ), with solutions as discussed previously. Since $u=\eta$ $(<1)$ solves ( ${ }^{* *}$ ) at $\beta_{c}$, we have $\xi\left(\beta_{c}\right)=\eta$ and $\beta_{c} \geqslant \beta_{c}^{0}$. We may conclude that if $\eta<1$, then

$$
B=\left\{\begin{array}{lll}
j|\varepsilon| \eta+\beta^{-1} I^{j}(\eta) & \text { if } & \beta \leqslant \beta_{c} \\
\varepsilon^{2} / 2 \rho A+j^{2} \rho A \xi(\beta)^{2}+\beta^{-1} I^{j}(\xi(\beta)) & \text { if } \beta>\beta_{c}
\end{array}\right.
$$

We conclude that

$$
\mathscr{S}(\varepsilon, \alpha, \beta)= \begin{cases}j|\varepsilon| \mu(\beta)+\beta^{-1} I^{j}(\mu(\beta)) & \beta \leqslant \beta_{c} \\ \varepsilon^{2} / 2 \rho A+j^{2} \rho \Lambda \xi(\beta)^{2}+\beta^{-1} I^{j}(\xi(\beta)) & \beta>\beta_{c}\end{cases}
$$

## REFERENCES

1. R. H. Dicke, Phys. Rev. 93:99 (1954).
2. M. Tavis and F. W. Cummings, Phys. Rev. 170:379 (1968).
3. G. Scharf, Helv. Phys. Acta 43:806 (1970).
4. K. Hepp and E. H. Lieb, Ann. Phys. (N.Y.) 76:360 (1973).
5. K. Hepp and E. H. Lieb, Phys. Rev. A 8:2517 (1973).
6. N. N. Bogoljubov and V. N. Plechko, Physica A 82:163 (1976).
7. A. M. Kurbatov and D. P. Sankovich, Theor. Math. Phys. 42:258 (1980).
8. A. Klemm, V. A. Zagrebnov, and P. Ziesche, J. Phys. A 10:1987 (1977).
9. V. A. Zagrebnov, Z. Phys. B 55:75 (1984).
10. N. N. Bogoljubov, J. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, and N. S. Tonchev, Russian Math. Surveys 39:1 (1984).
11. M. Fannes, P. N. M. Sisson, A. Verbeure, and J. C. Wolfe, Ann. Phys. (N.Y.) 98:38 (1976).
12. M. Fannes, H. Spohn, and A. Verbeure, J. Math. Phys. $21: 355$ (1980).
13. W. Cegla, J. T. Lewis, and G. A. Raggio, The free energy of quantum spin systems and large deviations. Preprint, DIAS-STP 87-44. To appear in Commun. Math. Phys.
14. E. H. Lieb, Commun. Math. Phys. 31:327 (1973).
15. M. van den Berg, J. T. Lewis, and J. V. Pulè, Helv. Phys. Acta 59:1271 (1986).
16. J. M. Cook, J. Math. Phys. 2:33 (1961).

[^0]:    ${ }^{1}$ Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland.

[^1]:    ${ }^{2}$ Since $\mathfrak{h}_{n}$ has a spectrum consisting entirely of eigenvalues $\left\{\omega_{n}(v): v \geqslant 1\right\}$ of finite multiplicity, this is a rewriting of the infinite-mode Hamiltonian of Section $1 ;\left\{\lambda_{n}(v): v \geqslant 1\right\}$ are the expansion coefficients of $\lambda_{n}$ in an eigenbasis of $\mathfrak{h}_{n}$.

[^2]:    ${ }^{3}$ The equation $(x \cdot y)$ of Ref. 13 will be referred to as $(I x \cdot y)$.

[^3]:    ${ }^{4}$ This function is denoted by $I_{6}$ in Ref. 13.
    ${ }^{5}$ All the following quantities depend on the density $\rho$ and on $j$, but we avoid overloading the notation.

[^4]:    ${ }^{6} A \geqslant 0$ by definition; if $A=0$, then the system is thermodynamically equivalent to the noninteracting system obtained by setting $\lambda_{n}=0$ in the Hamiltonian.
    ${ }^{7}$ If $\varepsilon=0$, then $\rho_{c}=0$ and $\beta_{c}=3 / 2 j(j+1) \rho A$. All our results are correct also in the case $\varepsilon=0$.
    ${ }^{8}$ Set $\mu(\beta)=0$ if $\varepsilon=0$.

[^5]:    ${ }^{9}$ Here and in what follows $\Delta$ denotes the excess with respect to the free boson field; e.g., $\Delta f=f-f^{0}$.

[^6]:    ${ }^{12}$ It is easily seen that $A_{n}(\cdot ; \omega)$ is convex and nondecreasing.
    ${ }^{13}$ Recall that $\operatorname{Dom}\left(\mathfrak{h}^{-1}\right)$ is a core for $\mathfrak{b}^{-1 / 2}$.

