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The Equilibrium Thermodynamics of a 
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We consider the equilibrium thermodynamics of a Dicke-type model for N iden- 
tical spins of arbitrary magnitude interacting linearly and homogeneously with a 
boson field in a volume VN, in the limit N--, o% VN~ 00, with N/VN=COnSt. 
The system exhibits a second-order phase transition; complete information on 
the spin polarizations and their correlations is obtained. The proofs use a 
general result on the free energy of quantum spin systems based on the large 
deviation principle and the Berezin-Lieb inequalities. 

KEY WORDS: Spins coupled to a boson field; Dicke maser model; second- 
order phase transition; large deviations. 

1. I N T R O D U C T I O N  

In 1954, Dicke  (~) in t roduced  the H a m i l t o n i a n  

Hn=coa*a+e ~ S(~k,+n-'/22 ~ [aSa)+a*S~k)] 
k = l  k = l  

as a car ica ture  for a system of n ident ical  a toms,  descr ibed  in a two-level  
a p p r o x i m a t i o n  by sp in - l / 2  ope ra to r s  S(~), in terac t ing  with one mode  of  the 
quan t ized  e lec t romagnet ic  field of f requency co in the d ipole  and  ro ta t ing-  
wave app rox ima t ions .  The  dynamics  of  the Dicke  mase r  mode l  has since 
been s tudied extensively.(2'3) 

In  1973 interest  in the thermodynamics of the Dicke  mase r  mode l  was 
boos ted  when H e p p  and  Lieb (4) gave a r igorous  and  comple te  discussion of 
the t he rmodynamics  of  the mode l  and  d iscovered  its s econd-orde r  phase  
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transition. Subsequently these authors (5) considered many-mode versions, 
removing also the rotating-wave approximation: 

Hn = ~ e),(v) a*av + e S~k ) + n 1/2 Z [l~n(Y ) a* + 2n(v) av] S(~) 
v = l  k = l  v = l  k = l  

The approximating Hamiltonian method has been used to study the 
model and its variations. These studies include models with infinitely many 
modes, (6'7) arbitrary spins (i.e., not restricted to be of magnitude 1/2), and 
also models where the coupling constants 2 depend on the spin index. (8) 
Reviews of these results are given in Refs. 9 and 10. The thermodynamic 
equilibrium states have also been analyzed, (11'12) using the methods of 
algebraic quantum statistical mechanics. 

Here, we consider the equilibrium thermodynamics of the infinitely 
many-mode model specified by the Hamiltonian 

H,= E c%(v) a*av+e ~ S(~)+Vs '/2 E ~ [2n(V) a*+2,(v)av]S~k) 
v~>[ k = l  v>~l k = l  

where the spin operators S(k) are copies of a spin operator S of arbitrary 
magnitude j = 1/2, 1, 3/2, 2,.... The quantity Vn is the quantization volume 
of the boson field, and we will consider the thermodynamic limit where 
n ~ 0% V, ~ 0% but the density of spins p = n/V, remains constant. We 
assume that the strictly positive frequencies {c%(v): v >~ 1 } satisfy 

v~>l 

and the complex coupling constants {2~(v): v/> 1 } satisfy 

I)~n(V)l 2 < ~  
v>~l 

These conditions guarantee the self-adjointness of H A and the finiteness of 
the associated partition function. The equilibrium thermodynamics of the 
model is obtained as an application of a general result for quantum spin 
system, (~3) obtained by a combination of large deviation methods and 
Berezin-Lieb inequalities. Only two conditions are required, namely: the 
existence of the thermodynamic limit f~176 of the free- 
energy density fo(fi) of the free boson field, where 

f0(fi)= (_ l/fiNn ) log traceb . . . . .  exp [-- f i  ~ o9.(v)a*a~] 
k v~>l 3 

= (!/fiVn) ~ log{l -exp[- f i~%(v)]}  
v~>l 



Equilibrium Thermodynamics of Spin-Boson Model 1203 

and the existence of the limit 

A =  lim ~ con(v) -1 ]2n(v)] 2 
n ~ o o  

v ~ > l  

Previous results ~6) on the infinitely many-mode case were derived 
under stronger assumptions. The generalization to spins of arbitrary 
magnitude is of interest because the Hamiltonian H,  describes a system of 
quantum spins interacting with the quantized electromagnetic field and 
with an external magnetic field B =  (0, 0, -~) ;  in atomic physics, models 
with two-level atoms are of greatest interest. 

Briefly and qualitatively, our results are the following: 
Let q = ]~[/2jpA; for q ~> 1, the thermodynamic properties of the system 

are identical with those of the noninteracting system [obtained by setting 
2,(v) = 0, for all n and v ~> 1 ]; for r/< 1 we recover the second-order phase 
transition discovered by Hepp and Lieb~4): there exists a nonzero finite 
critical temperature Tc depending on j ]a] and ~/, at which the second 
derivative of the specific free energy with respect to the temperature is 
discontinuous. 

The following rigorous results appear to be new: 

1. The mean spin polarization in the z direction is always dispersion- 
free; below Tr this polarization is given by - e / 2 p A  and is thus 
independent of the temperature and of the magnitude j of the spins 
(see Fig. 1). 

2. The mean spin polarization in the x direction has nonzero disper- 
sion below Tc (see Fig. 2). 

3. There is a spontaneous polarization in the x direction below T,.: 
perturbing the Hamiltonian H~ by ct~Sl~ ), the mean spin 
polarization in the x direction is an odd function of ~, which does 
not go to zero as c~ ~ 0  for T <  T~ when q < 1 (see Fig. 4). 

4. The boson density, as a function of frequency, is equal to the free 
boson density for q i> 1, and for r/< 1 when T~> To; for r/< 1 and 
T < Tc the difference between the boson density and the free boson 
density is positive and increases with increasing frequency. 

2. THE RESULTS 

Let S = (S x, S y, S z) be spin operators of magnitude jE  {l/2, 1, 3/2,...}, 
acting on the (2j+ 1)-dimensional Hilbert space ~)(j), and satisfying the 
usual commutation relations ES x, S y] = iS z (and cyclic permutations). We 
let R,  be the n-fold (n=  1,2, 3,...) tensor product of ~3(j), and let 

822/50/5-6-23 
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S(k) (k = 1, 2 ..... n) be a copy of S acting on the kth component of R..  We 
se t  

Sn= ~ S(k) on R.  
k = l  

For each n = 1, 2 ..... the boson field is specified by the one-particle 
Hamiltonian b. acting on the Hilbert space L Z ( d n )  where ~r is a bounded 
subset of ~a (d=  1, 2, 3,...) of volume (i.e., Lebesgue measure) V.. The 
Hamiltonian b~ is assumed to be a positive, injective self-adjoint operator 
such that exp(- /~b . )  is a trace-class operator for each /~ > 0. This implies 
that b. has a bounded inverse. 

The Hamiltonian for the composite system of n spins (of magnitude j)  
interacting with the boson field is 2 

H n = d r ( D n ) Q l + e l @ S Z + V , ~ l / 2 [ a * ( 2 n ) + a ( ) o , , ) ] Q S  x ( 1 )  

on the Hilbert space ~ | R. ,  where ~ is the symmetric Fock space built 
upon L2(d.) ,  e is real, and 2. eLZ(d. ) .  Here, a(-) denotes the usual 
annihilation operator on ~, and d F ( . )  is the second-quantization map. It 
can be easily verified (see Appendix A) that (1) does indeed define a self- 
adjoint operator with domain equal to that of dF([%) | 1, and that 

Z.(/~) = trace exp(-/~H~) 

is finite for all/3 > 0. We use the notation 

( X ) n  = Z.(//) -1 trace [exp( - /~H. )  X] 
~ |  

The Hamiltonian H .  has a symmetry which we will exploit: Let U be the 
unique unitary operator on ~3(j) such that 

U * S x U  = - S  x, U * S Y U  = - S  y, U * S z U  = S z 

Let U(k) denote a copy of U acting on the kth component of Rn; then the 
unitary operator on ~ | Rn given by 

2 Since b~ has a spectrum consisting entirely of eigenvalues {~n(v): v >~ 1 } of finite multiplicity, 
this is a rewriting of the infinite-mode Hamiltonian of Section 1; {2.(v) :v~>l} are the 
expansion coefficients of 2n in an eigenbasis of b..  



Equilibrium Thermodynamics of Spin-Boson Model 1205 

satisfies 

U * ( l |  u . =  - 1  |  u * ( l |  u ~  - I |  

U * ( I | 1 7 4  U * ( d V ( . ) | 1 7 4  (2) 

U*(a(.)@ 1) U . =  - a ( - ) |  1 

Hence, we have [H . ,  U.]  = 0. 
To obtain information on the spin polarizations and their fluctuations, 

we consider the family of Hamiltonians {K.(~, t): ~ e R, t = (t~, ty, t=)~ ~3} 
defined by 

K.(~, t) = H.  + c,1 | S~ + n ~1 | [-t~(SX) ~ + t~(S~) ~ + t~(S,~) ~ ] 

We set 

f.(fi, ~, t ) =  ( - f l V n ) - '  log trace exp [ - f lK . (~ ,  t)] 
~| 

To apply Theorem 3 of Ref. 13, 3 we first notice that, in the ter- 
minology of Section 2 of Ref. 13, Kn(~, t) is homogeneously decomposable 
[-see (I2.8)], with 

K.(~, t; J) = dE(i).) | 1 + el | JS z + V;  1/2[a*(2.) + a(2.)]  | sS~ 

+ al | JS ~ + n-~l  | [tx(JSX) 2 -st- ty(YSY) 2 -+- tz(YSZ) 2] 

where J is an integer (resp. half-integer) less than or equal to the integer 
(resp. half-integer) nj. The lower and upper symbols of Kn(~, t; J)  are the 
operators on ~ given (see table on p. 330 of Ref. 14, or Appendix 3 of 
Ref. 13), respectively, by [e = (x, y, z), x2+  y 2 +  z2= 1, is in the unit sphere 
S 2 c ~ 3 ] :  

K~(~, t; J, e) = dr(t) .)  + eJzl + V;  ~/2jx[a*(2.) + a(2.)]  

-4- o~Jxl + B 1 j ( j _  1)(txX2 q_ tyy2 + tzz 2) 1 

+ (J/2n)(tx + ty + t~) 1 

K~(~, t; s, e) = ar(b.)  + e(J+ 1) zl + v ~ / 2 ( J +  1) x[a*(2 . )  + a(2.)]  

+ ~ ( J +  1)x l  + n - l ( J  + 1)(J + ~)(txX2 + ty y2 + tz z2) 1 

- -  [ ( J +  1)/2n](tx + ty + tz) 1 

3 The equation (x-y)  of Ref. 13 will be referred to as (Ix. y). 



1206 Lewis and Raggio 

The corresponding "lower", and "upper" semiclassical free energies defined 
by (I4.8) and (I4.9) are easily computed to be 

f ~(fl, c~, t; J/nj, e) 

=- ( - f i n )  - j  log trace exp[-flK~(fl ,  ~, t; J, e)] 

__  p - l f o ( f l )  _ _  pA~(J/n)2 x 2 + e(J/n) z + ~(J/n) x 

+ n - Z J ( J - � 8 9  + t z Z 2 ) + ( J / 2 n 2 ) ( t x + t y + t ~ )  (3a) 

f ~(fi, ct, t; J/nj, e) 

X u = ( - f i n )  -~ log trace e p[  -/~K~,(~, t; J, e)]  

= p -  ~ fo(~)_  P A n [ ( j  + 1)/n]2 x 2 + e [ ( J +  1)/hi z + 0{[(J + l)/n] x 

+ n - Z ( J +  1 ) ( J+  3)(txX2 + t y y  2 + t~z 2) 

- [ ( J +  1)/2n2]( tx+ ty+ tz) (3b) 

where 

fo( f l  ) = ( - fl V.)  log trace exp[ - M r ( b , , ) ]  

is the free energy density of the free boson field, and 

A. = 111).-1/2A.II2 = (2 . ,  b212 . )  

For u e [0, 1 ], let 

t; u, e) 

= p - l f o ( f i )  _ pA. j2u2x2 + ejuz + ~jux 

+ j2u2(txX 2 + ty y 2 + tzz 2) 

+ (j /2n) u[t~(1 -- x 2) + ty(1 -- y2) + tz(1 _ z2)] 

jT~(fl, ~, t; u, e) 

= p lfo(~) _ pA . j2u2x  2 + gjuz + oqux 

+ jZuZ(txX2 + ty y 2 + tzz 2) 

- pA . [ (2un j  + 1 )/n 2 ] x 2 + e(z/n) + e(x/n)  

+ [(5nju + 3) /2n2]( txx  2 + ty y2 + tzz 2) 

- [(nju + 1)/2n2](t~ + ty + tz) 
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Then, f~(/3, ~, t ; .  ) and f~(fl, ~, t ; - )  are cont inuous functions on [0, 1] x S 2, 

coinciding with (3a) and (3b), respectively, for all u = J/nj, and converging 
uniformly to 

fJ(fl ,  c~, t; u, e) = p lfo(fl) _ pAj2u2x 2 + ejuz + ~jux 

+ j2u2(txX2 + ty y 2 + tz z2) 

if 

f o ( f l ) =  lim fo(/3) and A =  lim An (4) 

both exist. 
This verifies the condit ions of Theorem 3 of Ref. 13, and proves the 

following result: 

T h e o r e m .  If condi t ion (4) is met for some/3 > 0, then 

lim f.(/3, c~, t ) = f ( / 3 ,  e, t) 
n ~ c o  

p = c o n s t  

exists and is given by 

where 

f ( f l , ~ , t ) = f ~  inf inf [ q ) J ( e , ~ , t ; u , e ) - f l - l U ( u ) ]  
u ~  [ 0 , 1 ]  e ~ S  2 

qoJ(e, 0~, t; u, e) =jeuz  + jo~ux + j2u2[ ( tx - p A ) x 2 + ty y2 + tzz 2] 

and 4 

s inh[a(2j  + 1)/2j] 
P ( u ) =  inf log 

a >1 o sinh(a/2j) 

We define the mean free energy fn bY 5 

fn(fl) = ( - f l Y . )  i log Z.( f l )  

the mean spin-polarizat ion vector Pn by 

P.(f l )  = n - l ( 1  |  

--au t ,  u~ [0, 1] (5) 

4 This function is denoted by 16 in Ref. 13. 
5 All the following quantities depend on the density p and on j, but we avoid overloading the 

notation. 
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and the (Hermitian, 3 x 3) two-correlation matrix ~ .  by 

~)a'b(fl) = n 2 ( ( l | 1 7 4 1 7 4  a, b e { x , y , z }  

By (2), the x and y components of P ,  are both zero. Moreover, 

f,,(fi) = f~(fl, 0, 0) (6) 

pz(fl) = p -,(~f,/&)(fl) (7) 

~aa(f l )=p l(r O;O)__pa(fl)2 ' a e { x , y , z }  ( 8 )  

To proceed, we assume that condition (4) is met for every/~ > 0, and 
that A >0. 6 The solution of the variational problem obtained in the 
theorem when at most one of the four real parameters c~, t is not zero is 
quite straightforward; we comment on this in Appendix B. The essential 
ingredient is the strict concavity of the function P( .  ), which is differentiable 
on (0, 1) with strictly decreasing derivative (U)' satisfying 

lim (P)'(u)=0, and lim ( P ) ' =  -oo  
u,LO u f l  

We first identify a critical spin density 

Pc = 1 s I / 2 j A  

and a j- and density-dependent, critical reciprocal temperature 7 

{+oo if p<~p~ 
/~c:= (-Jlel)- l (F) ' ( le l /2jAp) if p>pc 

For every fl > 0, the equation 

J l e l + ~  l(F)'(u)=O, ue  [0, 1] 

admits a unique solution #(/3). 8 The function /~(.) is increasing and 
continuous on (0, o0) with lima+o #(/3)= 0 and limer 0o/~(/?) = 1 when e # 0. 
If p > Pc, then for every/~ >~ tic, the equation 

2j2pAu+fl-l(u)'(u)=O, ue [0, 1] 

admits a unique nonzero solution ~(fl). The function r is increasing and 

6 A ~> 0 by  def in i t ion;  if A = 0, then  the  sy s t em is t h e r m o d y n a m i c a l l y  equ iva len t  to  the  n o n -  

i n t e r a c t i n g  sys tem o b t a i n e d  b y  se t t ing  2n = 0 in the  H a m i l t o n i a n .  

7 If  ~ = 0, then  Pc = 0 a n d  tic = 3/2j(j + 1) pA. All o u r  resul ts  a re  co r r ec t  a l so  in the  case  s = 0. 
8 Set p(f l )  = 0 if s = 0. 
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continuous on Eric, oo) and satisfies ~(flc)= IeI/2jAp, limaT ~ ~(fl)= 1. We 
let 

q = lel/2jpA 

The quantity ~/ acts as an order parameter: q ~> 1 for p <~ p,,, and q < 1 for 

P>Pc .  
When j = 1/2 the above can be made more explicit, since 

I1/2(u) = -�89 + u)log[�89 + u)] - �89 - u) log[�89 - u)] 

(I1/2)'(u) = -�89 log[(1 + u)/(1 - u)] = -a rc tanh(u)  

One has pc=  [el/pA, tic= (2/le]) arctanh(le]/pA) for p >Pc ,  

#(fl) = tanh(�89 I~l) 

and ~ is the solution of 

u = tanh(�89 fl > tic 

2.1. The Free Energy and Entropy Densities 

We use (6). The solution of the variational problem for ~ = 0, t = 0, is 
discussed in Appendix B; the result is 9 

f j  [el fl(fl)+fl-llJ(/l(fi)) for fl<.flc 
A f ( f l )=  - p  [j2pA[~(fl)2+172] +f l - iU(~( f l ) )  for f l>flc  

For j = �89 this reads 

Af(fl)  = - p f l  ' log[2 cosh(�89 fl ~< tic 

Af(fl)  = _p f l -1  log{2 cosh[�89 } 

+�88 fl>flc 

The entropy density s is given by kfl 2 Of/Off; we obtain 

As(fl) = kp ~IJ(#(fl)) for fl <~ tic 
(F(~(f l ) )  for f l>f lc  

We recover, but for infinitely many boson modes and arbitrary spins, 
the second-order phase transition discovered by Hepp and Lieb(4): The 
second derivative of A f i s  discontinuous at tic- Notice also that Afdoes  not 
depend on the coupling (i.e., on A) above the critical temperature, this 
being always the case if the density is below the critical density. 

9 Here and in what follows A denotes the excess with respect to the free boson field; e.g., 
Af =f  - f  ~ 
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2.2. The Spin Polarizations and Their Fluctuations 

We have already remarked that px and PY are both zero; to compute 
pz, we use (7), verify that f(fl) is differentiable with respect to e, and use 
Griffiths' lemma (see, e.g., Lemma 1 in the Appendix of Ref. 5) on the 
sequence fn(fl) of functions which are concave in e. We obtain 

= ~ ' - j  sgn(e) #(fl) for fl ~< tic 
pz(fl) ( -e /2pA for fl>fic 

pz is a continuous function of fl with a discontinuous derivative at tic. 
Notice that below the critical temperature, pz is independent of the 
temperature and of the spin magnitudej. Figure 1 shows pz for j =  �89 

To obtain the dispersions ~aa (a=x, y, z), we use (8); the functions 
fn(fl, ct, t) are concave in the components of t. We set ~ - -0  and all com- 
ponents of t equal to zero except ta in the variational problem of the 

1 0  pz(fl) = -�89189 for fl ~< fl~ and -�89 for fl > fl~. 

Fig. 1. 

Tr T 

Plot of pz versus T for j = � 8 9  and e = l .  ( . . . )  q~>l; ( - - )  r/=�89 [kTc= 
(2 arctanh �89 _ 0.910]. 
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theorem, then verify differentiability with respect to G, and use Griffiths' 
lemma. The results are 

~ y , ( / ~ )  = ~ ( / ~ )  = 0 

0 for fl<~flc 
~xx( f l )= jz [~(f l )2_  r/23 for fl > tic 

Figure 2 shows ~xx f o r j = � 8 9  
Since the y and z polarizations are dispersion-free, we conclude from 

the Schwarz inequality for states, that 

7~~ = 0 for all fl > 0 

and all a, b e {x, y, z} except a = b = x 

With these results, we can compute the limiting value of the energy density 
u.(fl) = V~ I ( H . ) . .  We obtain 

Au(fl) = pePZ(fi) - p2A~XX(fl) (9) 

Figure 3 shows Au for j = �89 

u ~xx(f l )=  0 for fl<~flc and �88 2] for fl>flc. 

3/'16 

Fig. 2. P l o t o f ~ X x v e r s u s  Tforj=�89 e=l, and~l=�89 ). 
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- 

I T 

, . " ~  

Fig. 3. Plot ofp -~Auversus T fo r j= �89189  

To make the phase transition more transparent, we consider the 
x polarization for the Hamiltonian Hn perturbed by a(1 | 

P~(fi, ~) = n- l {1  | S~) Ko~.O)= (~fn/~)(fl, ~, O) 

We find (see Appendix B) that f ( f l , . ,  0) is a function of [~[, and is differen- 
tiable on ~\{0}. For fl<~flc, lim=~o PX(fl, ~ )=0 ;  but for fl>fl~ [px(fl, .) is 
odd] 

- l i r a  P~(fl, ~) = lim P~(fl, ~) = j[~(fl)2 _ ~/2] ~/2 
~T0 ~$0 

Figure 4 shows P~ for j = �89 

2.3. The Contribution of the Bosons to the Energy 

For finite volume, the contribution of the bosons to the energy density 
is ub(/~) = V#1{dF(D,)| 1) , .  We proceed as before and let g,(/~, ~) be the 
specific free energy for the Hamiltonian obtained from H n by multiplying 
~)n with 7 > 0. We have 

ub(~) = (Og,/~y)(~, 1) (10) 
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l . . . . .  . ,  . . . . . .  
, . , , . . , . . . ' '  . 

_ I  i 
/ i 

i I '  f /  
/ / 0.3 ~/ / 

! / 
I J / 

// 
- 0..5 ~!/ 

/ / '  
/ 

/ 
/ 

/ "  / , /  - -  

/ 0.3 / / "  
I "  / ,  

~... ~ "  , / "  

, ~ "  . �9 . ~ , 

. . . . .  , . �9 . . , 

Fig. 4. Plot of P~ versus ~ for j=�89 ~=1, and q=�89 (kTc~_0.910). (.. .) kT=0.5 (-.-) 
kT=0.8; ( - - ) k T =  1; ( - - ) k T = 2 .  

We have already computed the limit g(fl, ~) of gn(fl, 7); by concavity of g.  
in V, we obtain from (10) that 

~u~(~) = p 2 a ~ ( ~ )  (11) 

Combining (11) and (9), we obtain 

lim Vy3/2([a*(2.)+a(2.)]|  (12) 
p ~ cons t  

We see that (12) factorizes to 

lira V;i/2([a*(2.)+a(2.)] |  lira V ~ I ( I |  (~0)  
n ~ o o  n ~ o o  

fi ~ COILS{ p = COllSt 

for fl ~< tic but does not factorize for fl > fl~. 
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2.4. The Boson-Number  Density  

For co e [0, oo ], let 

{10 if x < c o  ( x e N )  
l)o~(x) = if x ~> co 

The number operator for the bosons of energy strictly less than co is given 
by 

N.( co ) = d r O  o~(b.) ) 

Notice that 5 / . (0)=  0 and N . ( o o ) =  N. is the total boson number operator. 
Consider the number density for the bosons of energy strictly less than co: 

(Tn(fl; co)= Vn I < Nn(CO)@ 1 )n 

Introducing the auxiliary Hamiltonian 

M . ( p ; c o ) = H . - p N . ( c o ) |  #<~0 

and the associated "pressure" 

P.(fl, V; co) = (flV.) -1 log trace e x p [ - t i m . ( # ;  co)] 

we have 

a.(fi; co) = ( Op./O p )(fl, O; co) (13) 

Since M.(#; co) is obtained from H.  by replacing D. by D. - #9~o(Dn), which 
is again a strictly positive self-adjoint operator, we may apply the theorem, 
replacing A. by 

A.(#; co) = ( ,L ,  [ b . - # ~ A b . ) ]  -1 , l . )  

and thus condition (4) by 

pO(fl, #; co) = lim (flV.) 1 log trace exp{ - ~ [ a r ( t ) . ) - # N . ( c o ) ] }  

A(#; co) = lim A.(#; co) 
n ~ o o  

both exist. This guarantees the existence of p(fi, #;col  and gives us a 
variational formula for Ap(fl, #; co): 

Ap(fl, #; co) = p sup sup [--jeuz +jZpA(#; co) u2x 2 "1- j~ 1/J(b/)] 
u e [0 ,1  ] e e S  2 
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In order to proceed, we disregard the subtleties, which could appear 
already for free bosons (see Ref. 15), and assume that a(/~; co) exists (for 
some /3 > 0  and co>0).  We also assume that p~ co) and A(.; co) exist 
for /~ in an arbitrarily small interval I - a ,  0], a >0.  By convexity, 12 these 
functions are continuous in the open interval ( - a ,  0). We suppose that 
they are continuous from the left at/~ = 0. Finally, we assume that A(-; co) 
is differentiable in ( - a ,  0) with derivative A'(-; co) and that 

lira A'(/t; co) = A'(co) 
#?o 

exists. Solving the variational problem and using (13), we can now claim 

Aa(fl; co) = pZ~xx(fl) A'(co) 

We observe a (positive) contribution from the spins to the boson number 
density only below the critical temperature, and this contribution is non- 
decreasing in co. 

A P P E N D I X  A 

For completeness, we comment on the self-adjointness of the 
Hamiltonian H n defined by (1). We drop the index n. Assuming that 
exp(- /3b)  is trace-class, we could proceed by rewriting H in the form of 
Section 1; we consider the general case where b is assumed to be positive 
and injective (i.e., t)-1 exists), and 2 lies in the domain of D 1/2 

k e m m a .  Let b be a positive, injective self-adjoint operator on the 
Hilbert space b; let 2 ~ Dom(b -t/2) and set A = liD-m21[ 2. For  complex c, 
the operator 

fit ~ = dF(b ) + ca*(2) + ga(2) 

on the symmetric Fock space built upon b is self-adjoint on Dom(dF(b)),  
and bounded below by - I c l  2 A, If, more restrictively, 13 2 ~ D o m ( b  1), 
then 

~ =  W(-cb 12)dF(b) W(cb-'2)-lc[2 A1 

where the unitary operator W is given by 

W(f) = e x p [ a * ( f )  - a ( f ) ] ,  f 6 b 

12 It is easily seen that An(.; co) is convex and nondecreasing. 
13 Recall that Dom(b 1) is a core for b 1/2. 



1216 Lewis and Raggio 

ProoL The obvious operator inequality [b 1/22)(D 1/221~<A1 
entails 12)(21 ~< Ab, which in turn implies that a*(2)a(2)~< AdF(b). From 
this one concludes that forfeDom(dF(b)), 

II[a*(2)+a(2)]fll<...alldF(b)fll+(Aa l +  ][2[[) llfll forall 0 < a < l  

The Kato-Rellich theorem then establishes the self-adjointness claim. 
Moreover, if 2 r 0, 

Yf >~ A -~a*(2) a(2) + ca*(2) + ~a(2) 

=A l[a(2)+cA]*[a(2)+cA]-lcl2A 

which gives the lower bound. If 2 e Dora(b-1), then the claim follows from 
the quadratures formula(16): 

W(f)* dF(b) W(f) = dF(b) + a*(bf )  + a (b f )  + ( f ,  D f ) ,  f ~  Dom(D) I 

Consider H ( - H , ) ;  it suffices to consider H ~  H - e ( 1  | S~), since H 
is a bounded perturbation of H ~ The spectrum of S x consists of simple 
eigenvalues {E(k): k = 1, 2 ..... (2j+ 1) n =N};  let P(k) denote the associated 
spectral projections. We may then write 

N 

H ~  2 
k = l  

{dF(b ) + V 1/2E(k)[a*(2) + a(2)] } | P(k) 

If, then, 2 s Dom(b m), we conclude from the lemma that H ~ is self- 
adjoint on Dom(dF(b)@ 1) and bounded below by 

N 

- (A/V)  
k = l  

E(k)2[1 @ P(k)] : -(A/V) 1 @ (SX) z 

which is in turn bounded below by -(An2j2/V). 
If 2 e Dom(b-  1 ), then we have 

H ~ = U* [dr(b) | 1 ] U -  (A/V)[1 | (Sx) 2 ] 

where the unitary U is given by 

N 

t-:= Y~ 
k = l  

W(V-mE(k) b -12) | P(k) 

Finally, if e x p ( -  Bb) is trace-class, then so is exp [ -  fldF(b)]; since D- 1 
is bounded, the above formulas combined with, say, the Golden- 
Thompson inequality show that exp( - f lH)  is trace-class. 
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A P P E N D I X  B 

We comment  briefly on the solution of the variat ional  problem 
obtained in the theorem. We give some details only in the case t = 0. 

T h e / J  defined by (5) is clearly concave and decreasing. Moreover ,  I j is 
differentiable in (0, 1) with derivative (U)'  given by 

(U)'(u) = -a(u) ,  u ~ (0, 1) 

where a(u) is the unique positive solution of the equat ion 

[-(2j + 1 )/2j] coth [,a(2j + 1)/2j] - (1/2j) coth(a/2j)= u 

( I  J) ' is strictly decreasing, negative, with l im, ~ 0 (U)'(u) = 0 and 
l imu, l (U) ' (u)  = - o o .  One has I J ( 0 ) = l o g ( 2 j +  1), U ( 1 ) = 0 ,  and 

sinh[,a(u)(2j + 1 )/2j] 
IJ(u) = -ua(u)  + log 

sinh [, a( u )/2j ] 

Moreover ,  (U)'  behaves as [ , - 3 j / ( j+  1)] u when u+0,  and l im, to (U)"(u  ) 
= - 3 j / ( j  + 1). 

Let 

5e(e, ~ , /3 )=  sup sup [,/~ LU(u) - ju (~z+~x)+j2pAuZx2]  
uE[0,1] eeS 2 

where e and ~ are real, pA > O, and/~ > O. Clearly, 

5e(e, ~ , /~)= sup [,/3 l / J (u )+  MJ(u, z) ]  
u,z e (o.1) 

where the function M j on (0, 1) x (0, 1) is defined as 

mJ(u, z)=ju[,[el z +  Ic~l (1 - z 2 )  L/2 ] + j2pAu2(1 - z 2) 

The derivative of MJ(u, �9 ) with respect to z is [-notice that  we are now 
working in the open interval (0, 1)] 

MJz(U, z ) = j u [ l e l -  [~1 z(1 - z  2) 1 / z -2 jpAuz ]  

We discuss the solutions z of M~(u, z ) =  0. If e = 0, then MJz(U,.)< 0. If 
r  c~=0, then M~(u, . )>O if lel>~2jpAu, and if l e l<2jpAu,  then 

Mj(u, z ) =  0 if z = (l~l/2jpAu). If e and c~ are not  zero, then there is a unique 
solution, which we denote  by ~(u; e, c~). We verify that  

[(u; ~, ~) ~< min{(lel/2jpAu), 181/(/~ 2 + @2)1/2 } 
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and that 

lim~(u,e, cQ=lel/(e2+ct2) m , lim if(u, e, cQ = 0 
u~O ~ 0  

.~olim ~(u, e, ~ ) =  {~l/2jpAu ifif u<~U>~ leI/2jpAIeI/2jpA 

We define ~(u; e, . )  for arbitrary real ~ and ~ using the above limits for 
~(u; O, a) and ~(u; e, 0), and verify that indeed 

sup MJ(u,z)=MJ(u,~(u;~,a)) forall ue(O, 1) 
z~ (0,1) 

Moreover, ~(. ;~,a)  is decreasing and differentiable, ~(u; .,c 0 is even, 
increasing in le[, and differentiable, and if(u; ~, .) is even, decreasing in I~1, 
and differentiable. 

We can now write 

5a(e, a, fl) = sup {fl-XlJ(u) + MJ(u, if(u; ~, a))} 
u e  (0,1) 

The condition for the maximum is then 

J I~l ~(u; e, ~) + j  I~1 [1 - ~(u; e, ct) 2] 1/= + 2j2pAu[1 _ ~(u; e, ~)2] 

= - f l - l ( F ) ' ( u )  (*) 

The left-hand side of (*) is a positive, increasing function of u, converging 
t o j ( e 2 + a 2 )  I/2 when uJ, O, and having a finite, nonzero limit as uT 1. 

If either e or ct is not zero, the properties of (F) '  imply that (*) has a 
unique solution ~-tk(e, ct, fl) for every fl>O. We then verify that 
5e(e, a, fl)= fl-llJ(qJ)+ mJ(~, ~(~; e, ~)). It follows that 

{ OS~/Se }(e, ct, fl) = j sgn(e) ~b~(~9; e, ct) 

= j sgn(a) ~ [1 - ~((p; e, a)2] 1/2 

{ a ~ / ~ } ( ~ ,  ~,,/~) = - / ~ - : . . ( r  

If both e and a are zero, then (*) reads 

2fpAu = - f l -  l(U)'(u) (**) 

which, by the properties of (I0' ,  admits a solution ~(fl) in (0, 1 ) if and only 
if 

2jZpA > -fl-~ lim (P)"(u)= 3fl lj/(j + 1) 
u,LO 
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We infer that fl > flco =- 3/2j(j + 1) pA. The function ~(-) is increasing and 
continuous on (flo, oo), with 

We have 

lim ~(fl) = 0 and lim ~(fl) = 1 
35 [ ~  3T ~176 

= J'fl- 'U(0) for fl ~ flo 
5~(0'0'fl) [fi-'IJ(~([l))+j2pA~(fl) 2 for fl>fio 

We now discuss the case c~=0. We have 5r fl)=max{A,B}, 
where [using the definition of ~(u, E, 0) and t / -  [e[/2jpA] 

A -  = sup {j[e[ u+fi-lU(u)} 
ue  [0, rain{q,1}] 

B = sup {(e2/4pA)+jZpAu2+fl 1U(u) } 
u ~ (min{q,1 },t ] 

Consider A. If e=0 ,  then r /=0  and A=fl-IU(O). Let e r  the 
extremal condition (*) reads 

j Iel = --fl-l(IJ)'(u) (***) 

which admits a unique solution #(fl) in (0, 1) for every fl > 0. The function 
#(-) is strictly increasing, and, when t /< 1, #(fl)~< t/ if and only if fl ~ fl~., 
where tic is the solution of #(tic) = q, that is, 

/~cJ IEI = - ( I J ) ' ( o ) ,  ~ < l 

We verify that indeed l i m ~  0 tic=ri ~ We incorporate the case e = 0  
consistently by putting #(fl)---0 for e = 0. We have then 

I~]el#(fl)+fl 1P(#(fl)) for fl<-fic 
A=__ ]Eltl+fl_llS01) for fl>flc (hence t /< l )  

Consider B, which does not trivialize only when t /< 1. The extremal 
condition is then (**), with solutions as discussed previously. Since u= t /  
(<1 )  solves (**) at tic, we have ~(fic)=t/ and fl >~flo. We may conclude 
that if t /< 1, then 

B f J [ E l t / + f l  1U(t/) if fl<~flc 
=[E2/2pA+j2pA~(fl)2+fl 1U(~(fl)) if fl>flc 

We conclude that 

J ' J  [~;I #(fl) q- fl llJ(#(fl)) fl <~ fie 
5~ llJ(~(fl)) f l>flc 

822/50/5-6-24 
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